
django-river Documentation
Release 3.0.0

Ahmet DAL

Nov 18, 2019

Contents

1 Getting Started 3

2 Contents 5
2.1 Getting Started . 5
2.2 Overview . 6
2.3 Administration . 8
2.4 API Guide . 12
2.5 Authorization . 17
2.6 Hooking Guide . 17
2.7 Migration Guide . 21
2.8 Change Logs . 22

3 Indices and tables 27

i

ii

django-river Documentation, Release 3.0.0

River is an open source and always free workflow framework for Django which support on the fly changes instead
of hardcoding states, transitions and authorization rules.

The main goal of developing this framework is to be able to edit any workflow item on the fly. This means that all
the elements in a workflow like states, transitions or authorizations rules are editable at any time so that no changes
requires a re-deploying of your application anymore.

Contents 1

https://travis-ci.org/javrasya/django-river
https://coveralls.io/github/javrasya/django-river?branch=master
https://readthedocs.org/projects/django-river/?badge=latest
https://app.codacy.com/app/javrasya/django-river?utm_source=github.com&utm_medium=referral&utm_content=javrasya/django-river&utm_campaign=Badge_Grade_Dashboard

django-river Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Getting Started

You can easily get started with django-river by following Getting Started.

3

django-river Documentation, Release 3.0.0

4 Chapter 1. Getting Started

CHAPTER 2

Contents

2.1 Getting Started

1. Install and enable it

pip install django-river

INSTALLED_APPS=[
...
river
...

]

2. Create your first state machine in your model and migrate your db

from django.db import models
from river.models.fields.state import StateField

class MyModel(models.Model):
my_state_field = StateField()

3. Create all your states on the admin page

4. Create a workflow with your model (MyModel - my_state_field) information on the admin page

5. Create your transition metadata within the workflow created earlier, source and destination states

6. Create your transition approval metadata within the workflow created earlier and authorization
rules along with their priority on the admin page

7. Enjoy your django-river journey.

my_model=MyModel.objects.get(....)

my_model.river.my_state_field.approve(as_user=transactioner_user)

(continues on next page)

5

django-river Documentation, Release 3.0.0

(continued from previous page)

my_model.river.my_state_field.approve(as_user=transactioner_user, next_
→˓state=State.objects.get(label='re-opened'))

and much more. Check the documentation

Note: Whenever a model object is saved, it’s state field will be initialized with the state is given at step-4 above by
django-river.

2.2 Overview

Main goal of developing this framework is to be able to edit any workflow item on the fly. This means, all elements
in workflow like states, transitions, user authorizations(permission), group authorization are editable. To do this, all
data about the workflow item is persisted into DB. Hence, they can be changed without touching the code and
re-deploying your application.

There is ordering aprovments for a transition functionality in django-river. It also provides skipping specific
transition of a specific objects.

Playground: There is a fake jira example repository as a playground of django-river. https://github.com/javrasya/
fakejira

2.2.1 Requirements

• Python (2.7, 3.4, 3.5, 3.6)

• Django (1.11, 2.0, 2.1, 2.2)

• Django >= 2.0 is supported for Python >= 3.5

2.2.2 Example Scenarios

Simple Issue Tracking System

6 Chapter 2. Contents

https://github.com/javrasya/fakejira
https://github.com/javrasya/fakejira

django-river Documentation, Release 3.0.0

Re-Open case

Closed without Re-Open case

2.2. Overview 7

django-river Documentation, Release 3.0.0

Closed with Re-Open case

2.3 Administration

Since django-river keeps all the data needed in a database, those should be pre-created before your first model
object is created. Otherwise your app will crash first time you create a model object. Here are all needed models
that you need to provide. django-river will register an Administration for those model for you. All you need to
do is to provide them by using their Django admin pages.

2.3.1 State Administration

Field Default Optional Format Description
label NaN False String (w+) A name for the state
description Empty string True String (w+) A description for the state

8 Chapter 2. Contents

django-river Documentation, Release 3.0.0

2.3.2 Transition Meta Administration

Field Default Optional Format Description
workflow False

False
Choice
of
Strings

Your model class
along with the field
that you want to use
this transition
approval meta for.
django-river

will list all the
possible model and
fields you can pick
on the admin page

source_state False State

Source state of the
transition

destination_state False State

Destination state of
the transition

2.3. Administration 9

django-river Documentation, Release 3.0.0

10 Chapter 2. Contents

django-river Documentation, Release 3.0.0

2.3.3 Transition Approval Meta Administration

Field Default Optional Format Description
workflow False

Choice
of
Strings

Your model class
along with the field
that you want to use
this transition
approval meta for.
django-river

will list all the
possible model and
fields you can pick
on the admin page

transition_meta False TransitionMete

Transition
information that
contains
source and
destination states

permissions Empty List True List<Permission>

List of permissions
which will be
authorized to
approve this
transition

groups Empty List True List<UserGroup>

List of use groups
which will be
authorized to
approve this
transition

priority 0 False Number

The priority of the
transition
approval. Since
there can be more
than one transition
approval to
make that transition
which means
that some users
should approve
before some other
users can approve
the same transition.
The closer to
zero, the more
priort the transition
approval is.

action_text (De-
pcrecated)

True String

An action text for
this transition
like, Open, Close.
If this
is not specified,
than
django-river

will pick something
like

source_state->destination_state

2.3. Administration 11

django-river Documentation, Release 3.0.0

2.4 API Guide

2.4.1 Class API

This page will be covering the class level API. It is all the function that you can access through your model class like
in the example below;

>>> MyModel.river.my_state_field.<function>(*args)

get_on_approval_objects

This is the function that helps you to fetch all model objects waitig for a users approval.

>>> my_model_objects == MyModel.river.my_state_field.get_on_approval_objects(as_
→˓user=team_leader)
True

Type Default Optional Format Description
as_user input NaN False Django User

A user to find
all the model
objects
waiting for a
user’s approvals

Output List<MyModel>

List of available
my model
objects

initial_state

This is a property that is the initial state in the workflow

>>> State.objects.get(label="open") == MyModel.river.my_state_field.initial_state
True

Type Format Description
Output State The initial state in the workflow

final_states

This is a property that is the list of final state in the workflow

>>> State.objects.filter(Q(label="closed") | Q(label="cancelled")) == MyModel.river.
→˓my_state_field.final_states
True

12 Chapter 2. Contents

django-river Documentation, Release 3.0.0

Type Format Description
Output List<State> List of the final states in the workflow

2.4.2 Instance API

This page will be covering the instance level API. It is all the function that you can access through your model object
like in the example below;

my_model=MyModel.objects.get(....)

my_model.river.my_state_field.<function>(*args)

approve

This is the function that helps you to approve next approval of the object easily. django-river will handle all the
availability and the authorization issues.

>>> my_model.river.my_state_field.approve(as_user=team_leader)
>>> my_model.river.my_state_field.approve(as_user=team_leader, next_state=State.
→˓objects.get(name='re_opened_state'))

2.4. API Guide 13

django-river Documentation, Release 3.0.0

Type Default Optional Format Description
as_user input NaN False Django User

A user to make
the transaction.

django-river
will check
if this user is
authorized to
make next
action by
looking at
this user’s
permissions and
user groups.

next_state input NaN True/False State

This parameter
is redundant
as long as there
is only one
next state from
the current
state. But if
there is multiple
possible next
state in place,

django-river
is naturally
is unable know
which one is
actually
supposed to be
picked.
If the given next
state is not
a valid next
state a
RiverException
will be thrown.

get_available_approvals

This is the function that helps you to fetch all available approvals waiting for a spesific user according to given source
and destination states. If the source state is not provided, django-river will pick the current objects source state.

14 Chapter 2. Contents

django-river Documentation, Release 3.0.0

>>> transition_approvals = my_model.river.my_state_field.get_available_approvals(as_
→˓user=manager)
>>> transition_approvals = my_model.river.my_state_field.get_available_approvals(as_
→˓user=manager, source_state=State.objects.get(name='in_progress'))
>>> transition_approvals = my_model.river.my_state_field.get_available_approvals(

as_user=manager,
source_state=State.objects.get(name='in_progress'),
destination_state=State.objects.get(name='resolved'),

)

Type Default Optional Format Description
as_user input NaN False Django User

A user to find
all the approvals
by user’s
permissions and
groups

source_state input

Current
Object’s
Source State

True State

A base state to
find all available
approvals
comes after.
Default is
current object’s
source state

destination_state input NaN True State

A spesific
destination state
to
fetch all
available state.
If it
is not provided,
the approvals
will be found
for all available
destination
states

Output List<TransitionApproval>

List of available
transition
approvals

2.4. API Guide 15

django-river Documentation, Release 3.0.0

recent_approval

This is a property that the transition approval which has recently been approved for the model object.

>>> transition_approval = my_model.river.my_state_field.last_approval

Type Format Description
Output TransitionApproval

Last approved transition approval
for the model object

next_approvals

This is a property that the list of transition approvals as a next step.

>>> transition_approvals == my_model.river.my_state_field.next_approvals
True

Type Format Description
Output List<TransitionApproval>

List of transition approvals comes
after last approved transition
approval

on_initial_state

This is a property that indicates if object is on initial state.

>>> my_model.river.my_state_field.on_initial_state
True

Type Format Description
Output Boolean True if object is on initial state

on_final_state

This is a property that indicates if object is on final state.

>>> my_model.river.my_state_field.on_final_state
True

16 Chapter 2. Contents

django-river Documentation, Release 3.0.0

Type Format Description
Output Boolean

True if object is on final state
which also means that the workflow
is complete

2.5 Authorization

django-river provides system users an ability to configure the authorizations at three level. Those are permissions,
user group or a specific user at any step. If the user is not authorized, they are not entitled to see and approve those
approvals. These three authorization mechanisms are also not blocking each other. An authorized user by any of them
is entitled to see and approve the approvals.

2.5.1 Permission Based Authorization

Multiple permission can be specified on the transition approval metadata admin page and django-riverwill allow
only the users who have the given permission. Given multiple permissions are issued in OR fashion meaning that it is
enough to have one of the given permissions to be authorized for the user. This can be configurable on the admin page
provided by django-river

2.5.2 User Group Based Authorization

Multiple user group can be specified on the transition approval metadata admin page and django-river will allow
only the users who are in the given user groups. Like permission based authorization, given multiple user groups are
issued in OR fashion meaning that it is enough to be in one of the given user groups to be authorized for the user.This
can be configurable on the admin page provided by django-river

2.5.3 User Based Authorization

Only one specific user can be assigned and no matter what permissions the user has or what user groups the user is
in, the user will be authorized. Unlike the other methods, django-river doesn’t provide an admin interface for
that. But this can be handled within the repositories that is using django-river. The way how to do this is basically
setting the transactioner column of the related TransitionApproval object as the user who is wanted to
be authorized on this approval either programmatically or through a third party admin page on this model.

2.6 Hooking Guide

2.6.1 Functions

Functions are the description in Python of what you want to do on certain events happen. So you define them
once and you can use them with multiple hooking up. Just go to /admin/river/function/ admin page and
create your functions there.‘‘django-river‘‘ function admin support python code highlighting as well if you enable the
codemirror2 app. Don’t forget to collect statics for production deployments.

2.5. Authorization 17

django-river Documentation, Release 3.0.0

INSTALLED_APPS=[
...
codemirror2
river
...

]

Here is an example function;

from datetime import datetime

def handle(context):
print(datetime.now())

Important: YOUR FUNCTION SHOULD BE NAMED AS handle. Otherwise django-river won’t execute
your function.

Context Parameter

django-river will pass a context down to your function in order for you to know why the function is triggered
or for which object or so. And the context will look different for different type of events. But it also has some
common parts for all the events. Let’s look at how it looks;

context.hook ->>

Key Type Format Description
type String

* on-approved
* on-transit
* on-complete

The event type that is
hooked up. The payload
will
likely differ according to
this value

when String

* BEFORE
* AFTER

Whether it is hooked right
before the event happens
or right after

payload dict

This is the context content
that will differ for each
event type. The
information that can be
gotten from
payload is describe in the
table below

Context Payload

18 Chapter 2. Contents

django-river Documentation, Release 3.0.0

On-Approved Event Payload

Key Type Description
workflow Workflow Model The workflow that the transition cur-

rently happening
workflow_object

Your Workflow
Object

The workflow object of the model
that has the state
field in it

transition_approval

Transition
Approval

The approval object that is
currently approved which
contains the information of the
transition(meta) as
well as who approved it etc.

On-Transit Event Payload

Key Type Description
workflow Workflow Model The workflow that the transition cur-

rently happening
workflow_object

Your Workflow
Object

The workflow object of the model
that has the state
field in it

transition_approval

Transition
Approval

The last transition approval object
which contains
the information of the
transition(meta) as well as
who last approved it etc.

2.6. Hooking Guide 19

django-river Documentation, Release 3.0.0

On-Complete Event Payload

Key Type Description
workflow Workflow Model The workflow that the transition cur-

rently happening
workflow_object

Your Workflow
Object

The workflow object of the model
that has the state
field in it

Example Function

from river.models.hook import BEFORE, AFTER

def _handle_my_transitions(hook):
workflow = hook['payload']['workflow']
workflow_object = hook['payload']['workflow_object']
source_state = hook['payload']['transition_approval'].meta.source_state
destination_state = hook['payload']['transition_approval'].meta.

→˓destination_state
last_approved_by = hook['payload']['transition_approval'].transactioner
if hook['when'] == BEFORE:

print('A transition from %s to %s will soon happen on the object
→˓with id:%s and field_name:%s!' % (source_state.label, destination_state.
→˓label, workflow_object.pk, workflow.field_name))

elif hook['when'] == AFTER:
print('A transition from %s to %s has just happened on the object

→˓with id:%s and field_name:%s!' % (source_state.label, destination_state.
→˓label, workflow_object.pk, workflow.field_name))

print('Who approved it lately is %s' % last_approved_by.username)

def _handle_my_approvals(hook):
workflow = hook['payload']['workflow']
workflow_object = hook['payload']['workflow_object']
approved_by = hook['payload']['transition_approval'].transactioner
if hook['when'] == BEFORE:

print('An approval will soon happen by %s on the object with id:%s
→˓and field_name:%s!' % (approved_by.username, workflow_object.pk, workflow.
→˓field_name))

elif hook['when'] == AFTER:
print('An approval has just happened by %s on the object with id:%s

→˓and field_name:%s!' % (approved_by.username, workflow_object.pk, workflow.
→˓field_name))

def _handle_completions(hook):
workflow = hook['payload']['workflow']
workflow_object = hook['payload']['workflow_object']
if hook['when'] == BEFORE:

print('The workflow will soon be complete for the object with id:%s
→˓and field_name:%s!' % (workflow_object.pk, workflow.field_name))

elif hook['when'] == AFTER:
print('The workflow has just been complete for the object with id:%s

→˓and field_name:%s!' % (workflow_object.pk, workflow.field_name))(continues on next page)

20 Chapter 2. Contents

django-river Documentation, Release 3.0.0

(continued from previous page)

def handle(context):
hook = context['hook']
if hook['type'] == 'on-transit':

_handle_my_transitions(hook)
elif hook['type'] == 'on-approved':

_handle_my_approvals(hook)
elif hook['type'] == 'on-complete':

_handle_completions(hook)
else:

print("Unknown event type %s" % hook['type'])

2.6.2 Hook it Up

The hookings in django-river can be created both specifically for a workflow object or for a whole workflow.
django-river comes with some model objects and admin interfaces which you can use to create the hooks.

• To create one for whole workflow regardless of what the workflow object is, go to

– /admin/river/onapprovedhook/ to hook up to an approval

– /admin/river/ontransithook/ to hook up to a transition

– /admin/river/oncompletehook/ to hook up to the completion of the workflow

• To create one for a specific workflow object you should use the admin interface for the workflow object itself.
One amazing feature of django-river is now that

it creates a default admin interface with the hookings for your workflow model class. If you have already defined one,
django-river enriches your already defined admin with the hooking section. It is default disabled. To enable it
just define RIVER_INJECT_MODEL_ADMIN to be True in the settings.py.

Note: They can programmatically be created as well since they are model objects. If it is needed to be at workflow
level, just don’t provide the workflow object column. If it is needed to be for a specific workflow object then provide
it.

Here are the list of hook models;

• OnApprovedHook

• OnTransitHook

• OnCompleteHook

2.7 Migration Guide

2.7.1 2.X.X to 3.0.0

django-river v3.0.0 comes with quite number of migrations, but the good news is that even though those are hard
to determine kind of migrations, it comes with the required migrations out of the box. All you need to do is to run;

python manage.py migrate river

2.7. Migration Guide 21

django-river Documentation, Release 3.0.0

2.8 Change Logs

2.8.1 2.1.0 (Dev)

• Bug - # 106: It crashes when saving a workflow object when there is no workflow definition for a state field

• Bug - # 107: next_approvals api of the instance is broken

• Bug - # 112: Next approval after it cycles doesn’t break the workflow anymore. Multiple cycles are working
just fine.

• Improvement - # 108: Status column of transition approvals are now kept as string in the DB instead of number
to maintain readability and avoid mistakenly changed ordinals.

• Improvement - # 109: Cancel all other peer approvals that are with different branching state.

• Improvement - # 110: Introduce an iteration to keep track of the order of the transitions even the cycling ones.
This comes with a migration that will assess the iteration of all of your existing approvals so far. According to
the tests, 250 workflow objects that have 5 approvals each will take ~1 minutes with the slowest django v1.11.

• Improvement - # 111: Cancel all approvals that are not part of the possible future instead of only impossible
the peers when something approved and re-create the whole rest of the pipeline when it cycles

• Improvement - # 105: More dynamic and better way for hooks.On the fly function and hook creations, update
or delete are also supported now. It also comes with useful admin interfaces for hooks and functions. This is a
huge improvement for callback lovers :-)

• Improvement - # 113: Support defining an approval hook with a specific approval.

• Improvement - # 114: Support defining a transition hook with a specific iteration.

• Drop - # 115: Drop skipping and disabling approvals to cut the unnecessary complexity.

• Improvement - # 116: Allow creating transitions without any approvals. A new TransitionMeta and Transition
models are introduced to keep transition information even though there is no transition approval yet.

2.8.2 2.0.0 (Stable)

• Improvement - [# 90,# 36]: Finding available approvals has been speeded up ~x400 times at scale

• Improvement - # 92 : It is mandatory to provide initial state by the system user to avoid confusion and possible
mistakes

• Improvement - # 93 : Tests are revisited, separated, simplified and easy to maintain right now

• Improvement - # 94 : Support class level hooking. Meaning that, a hook can be registered for all the objects
through the class api

• Bug - # 91 : Callbacks get removed when the related workflow object is deleted

• Improvement - Whole django-river source code is revisited and simplified

• Improvement - Support Django v2.2

• Deprecation - Django v1.7, v1.8, v1.9 and v1.10 supports have been dropped

2.8.3 1.0.2

• Bug - # 77 : Migrations for the models that have state field is no longer kept getting recreated.

• Bug - It is crashing when there is no workflow in the workspace.

22 Chapter 2. Contents

https://github.com/javrasya/django-river/issues/106
https://github.com/javrasya/django-river/issues/107
https://github.com/javrasya/django-river/issues/112
https://github.com/javrasya/django-river/issues/108
https://github.com/javrasya/django-river/issues/109
https://github.com/javrasya/django-river/issues/110
https://github.com/javrasya/django-river/issues/110
https://github.com/javrasya/django-river/issues/105
https://github.com/javrasya/django-river/issues/113
https://github.com/javrasya/django-river/issues/114
https://github.com/javrasya/django-river/issues/115
https://github.com/javrasya/django-river/issues/116
https://github.com/javrasya/django-river/issues/90
https://github.com/javrasya/django-river/issues/36
https://github.com/javrasya/django-river/issues/92
https://github.com/javrasya/django-river/issues/93
https://github.com/javrasya/django-river/issues/94
https://github.com/javrasya/django-river/issues/91
https://github.com/javrasya/django-river/issues/77

django-river Documentation, Release 3.0.0

2.8.4 1.0.1

• Bug - # 74 : Fields that have no transition approval meta are now logged correctly.

• Bug - django version is now fixed to 2.1 for coverage in the build to make the build pass

2.8.5 1.0.0

django-river is finally having it’s first major version bump. In this version, all code and the APIs are revisited
and are much easier to understand how it works and much easier to use it now. In some places even more performant.
There are also more documentation with this version. Stay tuned :-)

• Improvement - Support Django2.1

• Improvement - Support multiple state fields in a model

• Improvement - Make the API very easy and useful by accessing everything via model objects and model classes

• Improvement - Simplify the concepts

• Improvement - Migrate ProceedingMeta and Transition into TransitionApprovalMeta for simplification

• Improvement - Rename Proceeding as TransitionApproval

• Improvement - Document transition and on-complete hooks

• Improvement - Document transition and on-complete hooks

• Improvement - Imrove documents in general

• Improvement - Minor improvements on admin pages

• Improvement - Some performance improvements

2.8.6 0.10.0

• # 39 - Improvement - Django has dropped support for pypy-3. So, It should be dropped from django itself too.

• Remove - pypy support has been dropped

• Remove - Python3.3 support has been dropped

• Improvement - Django2.0 support with Python3.5 and Python3.6 is provided

2.8.7 0.9.0

• # 30 - Bug - Missing migration file which is 0007 because of Python2.7 can not detect it.

• # 31 - Improvement - unicode issue for Python3.

• # 33 - Bug - Automatically injecting workflow manager was causing the models not have default objects
one. So, automatic injection support has been dropped. If anyone want to use it, it can be used explicitly.

• # 35 - Bug - This is huge change in django-river. Multiple state field each model support is dropped completely
and so many APIs have been changed. Check documentations and apply changes.

2.8. Change Logs 23

https://github.com/javrasya/django-river/issues/74
https://github.com/javrasya/django-river/issues/39
https://github.com/javrasya/django-river/pull/30
https://github.com/javrasya/django-river/pull/30
https://github.com/javrasya/django-river/pull/33
https://github.com/javrasya/django-river/pull/35

django-river Documentation, Release 3.0.0

2.8.8 0.8.2

• Bug - Features providing multiple state field in a model was causing a problem. When there are multiple state
field, injected attributes in model class are owerriten. This feature is also unpractical. So, it is dropped to fix the
bug.

• Improvement - Initial video tutorial which is Simple jira example is added into the documentations. Also
repository link of fakejira project which is created in the video tutorial is added into the docs.

• Improvement - No proceeding meta parent input is required by user. It is set automatically by django-river
now. The field is removed from ProceedingMeta admin interface too.

2.8.9 0.8.1

• Bug - ProceedingMeta form was causing a problem on migrations. Accessing content type before migrations
was the problem. This is fixed by defining choices in init function instead of in field

2.8.10 0.8.0

• Deprecation - ProceedingTrack is removed. ProceedingTracks were being used to keep any transaction track
to handle even circular one. This was a workaround. So, it can be handled with Proceeding now by cloning
them if there is circle. ProceedingTracks was just causing confusion. To fix this, ProceedingTrack model and its
functions are removed from django-river.

• Improvement - Circular scenario test is added.

• Improvement - Admins of the workflow components such as State, Transition and ProceedingMeta are regis-
tered automatically now. Issue #14 is fixed.

2.8.11 0.7.0

• Improvement - Python version 3.5 support is added. (not for Django1.7)

• Improvement - Django version 1.9 support is added. (not for Python3.3 and PyPy3)

2.8.12 0.6.2

• Bug - Migration 0002 and 0003were not working properly for postgresql (maybe oracle). For these databases,
data can not be fixed. Because, django migrates each in a transactional block and schema migration and data
migration can not be done in a transactional block. To fix this, data fixing and schema fixing are seperated.

• Improvement - Timeline section is added into documentation.

• Improvement - State slug field is set as slug version of its label if it is not given on saving.

2.8.13 0.6.1

• Bug - After content_type and field are moved into ProceedingMeta model from Transition
model in version 0.6.0, finding initial and final states was failing. This is fixed.

• Bug - 0002 migrations was trying to set default slug field of State model. There was a unique problem. It is
fixed. 0002 can be migrated now.

24 Chapter 2. Contents

django-river Documentation, Release 3.0.0

• Improvement - The way of finding initial and final states is changed. ProceedingMeta now has parent-child
tree structure to present state machine. This tree structure is used to define the way. This requires to migrate
0003. This migration will build the tree of your existed ProceedingMeta data.

2.8.14 0.6.0

• Improvement - content_type and field are moved into ProceedingMeta model from Transition
model. This requires to migrate 0002. This migrations will move value of the fields from Transition to
ProceedingMeta.

• Improvement - Slug field is added in State. It is unique field to describe state. This requires to migrate 0002.
This migration will set the field as slug version of label field value. (Re Opened -> re-opened)

• Improvement - State model now has natural_key as slug field.

• Improvement - Transition model now has natural_key as (source_state_slug ,
destination_state_slug) fields

• Improvement - ProceedingMeta model now has natural_key as (content_type, field,
transition, order) fields

• Improvement - Changelog is added into documentation.

2.8.15 0.5.3

• Bug - Authorization was not working properly when the user has irrelevant permissions and groups. This is
fixed.

• Improvement - User permissions are now retreived from registered authentication backends instead of user.
user_permissions

2.8.16 0.5.2

• Improvement - Removed unnecessary models.

• Improvement - Migrations are added

• Bug - content_type__0002 migrations cause failing for django1.7. Dependency is removed

• Bug - DatabaseHandlerBacked was trying to access database on django setup. This cause no table
in db error for some django commands. This was happening; because there is no db created before some
commands are executed; like makemigrations, migrate.

2.8.17 0.5.1

• Improvement - Example scenario diagrams are added into documentation.

• Bug - Migrations was failing because of injected ProceedingTrack relation. Relation is not injected any-
more. But property proceeing_track remains. It still returns current one.

2.8. Change Logs 25

django-river Documentation, Release 3.0.0

26 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

27

	Getting Started
	Contents
	Getting Started
	Overview
	Administration
	API Guide
	Authorization
	Hooking Guide
	Migration Guide
	Change Logs

	Indices and tables

